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Abstract

Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed
loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of
bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero.
However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by
the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally
optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide
numerical examples for the soft-core Bose–Hubbard model and various spin-S models.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Monte Carlo methods have become a standard numerical tool in many branches of science, offering exact
results in a statistical sense [1]. In physics, some Monte Carlo algorithms still resemble the original description
by Metropolis [2] in the fifties. For instance, Ising and other classical lattice models were for a very long time
simulated using random spin flips. Such algorithms suffer from a critical slowing down in the neighborhood of
the second order phase transition. However, some twenty years ago Swendsen and Wang found a solution
using cluster updates [3,4], completely overcoming the critical slowing down for the classical Ising model.
Monte Carlo methods have also been applied to quantum many-body systems, where one tries to sample
either the wavefunction or the partition function [5]. The quantum analog of cluster updates, namely the loop
algorithm [6], triggered the development of the worm algorithm [7] and the operator loop algorithm [8] (and
later the directed loop algorithm [9,10]) in the stochastic series expansion representation. These algorithms
share the properties that they sample the one-body Green function, that they are formulated in continuous
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time [7] and are based on a world-line representation. Thus both algorithms are similar [11]. These algorithms
have successfully been applied to spin systems and to the Bose–Hubbard model [12]. Recently, the worm algo-
rithm has been formulated in the canonical ensemble, allowing to study more systems including superconduc-
ting grains and the nuclear pairing Hamiltonian [13,14].

The efficiency of a numerical simulation method is primordial: efficient algorithms lead to more accurate
results at the same computational cost and allow for the study of larger systems. The algorithms mentioned
above are based on a Markov process that results in a random walk in a specific configuration space. Config-
urations are visited by the random walker proportionally to their respective weights. By the Markov process,
subsequent measurements are trivially correlated. The transition matrix specifies the probability of going from
one configuration to another, and has to be defined in advance. In practice, one requires that transition matri-
ces satisfy the principle of detailed balance [1]. This, however, still leaves some freedom in the choice of the
transition matrices, which can be used to optimize the efficiency of the algorithm. A convenient updating
scheme is the Metropolis-Hastings algorithm [2,15]: a limited number of configurations can be reached from
the current one by defining a proposal distribution, and the transition to the new configuration is accepted or
rejected according to detailed balance [1].

In previous work, we introduced the notion of ‘locally optimal Monte Carlo’ [16], when the degrees of freedom
of every transition matrix are chosen in such a way as to mimic the globally optimal transition matrix, which, at
least in principle, can be written down exactly. This approach is a best guess for obtaining optimal efficiency, and
was found successful in practice for the directed loop algorithm in the stochastic series expansion representation
[16]. Here we investigate the consequences of the locally optimal Monte Carlo idea for the worm algorithm, and
try to combine the advantages of the directed loop algorithm with the advantages of the worm algorithm. This
results in a new formulation of the worm algorithm, hereafter called the locally optimal worm algorithm
(LOWA) [17]. We show results for various spin models and the Bose–Hubbard model, and compare the efficiency
of the LOWA with that of the directed loop algorithm in the stochastic series expansion framework.

2. The algorithm

We consider a two-body Hamiltonian H defined on a discrete lattice of system size L. The Hamiltonian can
be written as H ¼ H 0 � V , where the terms H0 and V are to be specified later on. We also assume a single
particle basis jimi ¼ jim1

; . . . ; imLi of H0 such that the action of any term in the Hamiltonian on a basis state
yields a single basis state. The models that we typically have in mind are the Bose–Hubbard model,
H ¼ �t
XL

hi;ji
byi bj þ

U
2

XL

i
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hi;ji
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and a general spin-S model,
H ¼ J
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hi;ji

1

2
ðSþi S�j þ S�i Sþj Þ þ DSz

i S
z
j � h
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i
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i : ð2Þ
In both expressions the notation hi; ji refers to the sum over nearest-neighbor sites only. In the Bose–Hubbard
model, bosons are created on site j by the operator bþj and the number of bosons on site j is counted by the
number operator nj. The kinetic term describes hopping of the bosons with tunneling amplitude t, while we
consider two kinds of potential energy : on-site repulsion with strength U and nearest-neighbor repulsion with
strength Vnn. For the spin anti-ferromagnet (spin exchange amplitude J > 0), we require that the lattice is
bipartite. All matrix elements remain positive as long as the model does not exhibit any frustration which
can for instance be induced by second nearest-neighbor hopping. As the calculations serve to demonstrate
the ideas related to efficiency, we restrict the discussion to one dimension.

A worm algorithm [7] is a quantum Monte Carlo algorithm where the decomposition of the partition
function,
Z ¼ Tr
X1
n¼0

Z b

0

dtn

Z tn

0

dtn�1 � � �
Z t2

0

dt1e�t1H0 V e�ðt2�t1ÞH0 � � � e�ðtn�tn�1ÞH0 V e�ðb�tnÞH0 ; ð3Þ



L. Pollet et al. / Journal of Computational Physics 225 (2007) 2249–2266 2251
is sampled indirectly by performing local moves in the extended configuration space of open world-line con-
figurations in the Green function sector,
Ze ¼ Tr½Tððbiðt0ÞbyjðsÞ þ h:c:Þ expð�bHÞÞ�: ð4Þ
The symbol T denotes time ordering, and we have introduced the Heisenberg operators ðbiðt0ÞbyjðsÞþ
byi ðt0ÞbjðsÞÞ which we call the ‘worm’ operators. Summing over all possible worms requires the extra sum eval-
uation of
X

i;j;t0;s

� � � e�t0H0 byi e
t0H0 � � � e�tsH0 bje

tsH0 � � � ; ð5Þ
where we have explicitly written out the Heisenberg worm operators, and where the ‘� � �’ mean that they
should be inserted at the right time, as implied by the time ordering of Eq. (4). Insertion of complete sets
of basis states allows to replace the operators H0 and V by matrix elements. We will choose to work in the
number occupation basis for the Bose–Hubbard model and in the spin Sz basis for the spin models. A natural
choice is to consider the one-body tunneling operators as perturbations V, and collect the diagonal one-body
and two-body operators in H0. This leads to the path-integral formulation. The stochastic series expansion
representation is found back when all operators of the Hamiltonian are put into V and H0 = 0. The integra-
tion over time is then immediate. In the path-integral formulation, the extended partition function can be writ-
ten as
Ze ¼
X1
n¼0

X
i1;...;in

X
i;j

Z b

0

dtn

Z tn

0

dtn�1 � � �
Z t2

0

dt1W ; ð6Þ
where the terms W ðn; t1; . . . ; tn; i; j; t0; ts; jimiÞ can be interpreted as weights when positive. The weights depend
on the order n and the integration times tj; j ¼ 1; . . . n of the perturbative expansion of the partition function Z

in V and also on the position and the time of the worm operators, and all possible inserted basis sets jimi.
W ¼ hi1jV ji2ie�ðt2�t1ÞEi2 hi2jV ji3ie�ðt3�t2ÞEi3 � � � e�ðtk�tk�1ÞEik hikjbyi jikþ1i � � � e�ðtl�tl�1ÞEik hiljbjjilþ1i
� � � e�ðtn�tn�1ÞEin hinjV ji1ie�ðbþt1�tnÞEi1 : ð7Þ
The Monte Carlo algorithm has to sample over all expansion orders n, all interaction times ti, all possible
worm times and positions, and all basis sets jimi. In a worm algorithm this is achieved by moving one of
the worm operators through the configuration space. Such updates shift, annihilate and create interactions
and sample indirectly over all possible basis states.

It is convenient to represent the weights in a graphical representation using world lines. An example is
shown in Fig. 1.

Whenever the worm operators reach each other, the discontinuities in the graphical representation cancel
and the resulting configuration belongs to the partition function Z, apart from the worm matrix element
hikjbið0Þbyi ð0Þjiki. At this point we are free to assign any value to this matrix element. The standard choice,
which we follow, is to take it constant for all states jiki (see Eq. (24)). This is graphically represented by
the absence of ‘circles’ (which denoted the discontinuities in Fig. 1) in a world-line picture.

In the literature there have been two different implementations of the worm idea. First, there was the worm
algorithm by Prokof’ev et al. [7], which was formulated in the path-integral representation. Later the operator
loop [8] and directed loop algorithm [9,10] in the stochastic series expansion representation were formulated.

Compared to the original formulation of the worm algorithm by Prokof’ev et al. [7], the efficiency of the
directed loop algorithm in the stochastic series expansion representation was found superior for spin systems
and even for a homogeneous Bose–Hubbard model in both phases (except for the extreme soft-core case) [18].
This is an expected result for spin systems where the diagonal energies are of the same order as the spin
exchange amplitudes, but for the Bose–Hubbard model this result feels unsatisfactory. For a trapped Bose–
Hubbard model however, the worm algorithm was found superior [18].

In the present paper we think of a new formulation of the worm idea, trying to combine to advantages of
the directed loop algorithm with those of the worm algorithm. More specifically, we want an algorithm where
the worm inserts and annihilates the interactions (as in the worm algorithm), but we also want to use the direc-



Fig. 1. Graphical representation of a typical configuration in the Green function sector. Time goes from left to right in the figure, there are
five sites. World lines are denoted by single lines (site is once occupied), double lines (site has occupancy two) or dashed lines (site is not
occupied). Interactions (hopping of a particle) are denoted by vertical lines. The two circles mark a discontinuity in the world lines and
correspond to the worm operators. One of them creates an extra particle, the other one annihilates it. As a consequence of the U(1)
symmetry, total particle number is conserved at every interaction.
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ted worms as in the directed loop algorithm. The modification of the diagonal factors and the hopping factors
contributing to the weight, Eq. (7), should be done in a locally optimal way [16].

3. Updates and detailed balance

The easiest way to ensure that the Markov chain converges to the correct invariant probability distribution
is by assuring detailed balance [2],
W ðX ÞT ðX ! Y Þq ¼ W ðY ÞT ðY ! X Þ: ð8Þ

The current configuration is denoted by X, the new configuration by Y. q is the acceptance factor to be used in
the Metropolis algorithm, where the transition rule for going from X to Y is given by P ðX ! Y Þ ¼
T ðX ! Y Þminð1; qÞ, while the transition rule for the reverse update is given by P ðY ! X Þ ¼ T ðX ! Y Þ
minð1; 1=qÞ, such that W ðX ÞP ðX ! Y Þ ¼ W ðY ÞPðY ! X Þ. We will now show that detailed balance is fulfilled
for every possible update occurring in the algorithm.

3.1. Move

The simplest possible update is to move the mobile worm to another (later/earlier) time. We assume that the
mobile worm is on site j, and corresponds to an operator bj. The configurations before and after the update are
shown in Fig. 2.

The relevant factors contributing to the weights before (W(X)) and after (W(Y)) the update are
W ðX Þ ¼ e�tk Eik hikjbjjikþ1ietk Eikþ1 ; ð9Þ
W ðY Þ ¼ e�tk0Eik hikjbjjikþ1ietk0Eikþ1 : ð10Þ
The notation ik means the complete state over all sites as in Eq. (7), but the subscript j means the particular site
j. The acceptance factor reads
q ¼ e�DtEik

e�DtEikþ1

T ðY ! X Þ
T ðX ! Y Þ ; ð11Þ
with Dt ¼ tk0 � tk. The exponentials can be canceled by choosing the transition probability densities as



Fig. 2. Graphical illustration of the Move update. The worm, originally at time tk tries to jump to a later time tk0 . The state to the left of
the worm is jiki, with energy Eik . The state to the right of the worm is jikþ1i, with energy Eikþ1

.

L. Pollet et al. / Journal of Computational Physics 225 (2007) 2249–2266 2253
T ðX ! Y Þdt ¼ Eik e
�DtEik dt; ð12Þ

T ðY ! X Þdt ¼ Eikþ1
e�DtEikþ1 dt: ð13Þ
The normalization factors Eik and Eikþ1
enter into q. These factors will be taken into account explicitly to-

gether with the interaction matrix elements at the moment that interactions can be inserted/annihilated,
see Section 3.2.

Let u be an uniform random deviate, u 2 ½0; 1½. Then, p ¼ � log u follows an exponential distribution and
we can compute the time shift window Dt as Dt ¼ p=Eik ¼ � logðuÞ=Eik , with Eik P 0. We come back to this
issue in Section 3.4. The recipe for the move update is thus

1. Draw a random deviate u 2 ½0; 1½.
2. When moving to the right (left), compute the time shift window Dt ¼ � logðuÞ=E, where E is the diagonal

energy to the left (right) of the worm.
3. If no interaction is encountered, update the current worm time from time t to time t þ Dt.

This amounts to a random walk based on Poisson steps. The exponential factors contributing to the weight,
Eq. (7), might fluctuate heavily. The strong point of the Poisson moves is that these exponential factors are
canceled exactly.

3.2. Inserting, removing and relinking an interaction

So far we assumed that the worm did not encounter any interaction during its propagation. What happens
if a worm does reach an interaction? At that point a decision must be taken: can the worm pass the interaction
or not? Or shall we delete the interaction? In that case we must also define updates to insert interactions that
are in balance with the removal of interactions. In this section, we will first discuss two cases where the worm
can pass the interaction, leaving it unchanged. Second, we discuss the insertion and removal of interactions
which, as we will see, also incorporates the modification of interactions.

When the worm byi encounters an interaction bykbl whose sites are different from the site on which the worm
head resides ði 6¼ k; lÞ, the worm can pass the interaction with probability one. This is a consequence of the
commutator of the worm operator and the interaction being zero, ½byi ; b

y
kbl� ¼ 0 [17]. Second, when a worm

operator byi encounters an interaction byi bj, it can pass the interaction with probability one. This is also the

result of the commutator being zero, ½byi ; byi bj� ¼ 0 [17].
Suppose we move to the right and want to insert an interaction. The update consists of a move from imag-

inary time tw to the time tk, inserting an interaction and then continue the move to the imaginary time t0k, as
shown in Fig. 3. Let’s suppose that the worm pair was created at tw, and that we want to evaluate estimators at
time t0k, meaning that the worm has to halt at time t0k. We will later discuss generalizations. The relevant con-
tributions to the weights of the configurations before and after the update are



Fig. 3. Graphical illustration of the insertion of an interaction by the worm. The worm, originally at the time tw before the time tk, jumps
to the time tk and inserts an interaction there from site j to site j � 1. Afterwards the worm jumps to a later time t0k , where we assume the
worm always has to halt. Later we will relax this condition. Between times tk and t0k a new state i0k is created. Note that this update is only
possible if the occupation on site j � 1 is larger than zero.
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W ðX Þ ¼ e�twEik hikjbjjikþ1ietwEikþ1 ; ð14Þ
W ðY Þ ¼ e�tkEik hikjbjb

y
j�1jik0 ie�ðtk0 �tkÞEik0 hik0 jbj�1jikþ1ietk0Eikþ1 : ð15Þ
The transition to move to the new configuration Y is given by the probability density
T MðX ! Y Þdt ¼ Eik e
�DtEik e�Dt0Eik0 dt; ð16Þ
with Dt ¼ tk � tw and Dt0 ¼ tk0 � tk. The second exponential does not have an E prefactor with it, since all time
shifts larger than Dt0 lead to the same final configuration Y. Similarly, for the reverse update
T MðY ! X Þ ¼
Z 1

Dt
Eikþ1

e�sEikþ1 ds�
Z 1

Dt0
e�sEikþ1 Eikþ1

ds ¼ e�DtEikþ1 e�Dt0Eikþ1 ¼ e�ðtk0 �twÞEikþ1 : ð17Þ
Once again, all the exponential factors cancel in the acceptance factor q. There remains a factor hikjV jik0 i=Eik

(with V the interaction), which is taken into account in the equations of detailed balance for the actual inser-
tion of a new interaction. If the worm was not forced to halt at the time t0k, the update would continue with the
insertion of another interaction at t0k (which would take the extra Eik0 (i.e., the normalization factor of the sec-
ond exponential in the right hand side of Eq. (16)) into account).

When inserting a new interaction, we can either make the current site j interact with site j + 1 or site j � 1 in
one dimension. In higher dimensions d, interactions can be inserted to all 2d neighboring sites. We have to
define the (conditional) probability distribution function that samples the three configurations of Fig. 4. When
we are in configuration a, we have to define P ða! bÞ and P ða! cÞ, both corresponding to the insertion of a
new interaction. Similarly, when we are in configuration b we have to define P ðb! aÞ and P ðb! cÞ, corre-
sponding to the removal and the modification (relinking) of an interaction, respectively. Updating between
the configurations a, b and c should be done proportional to the following factors contributing to the weights:
wðaÞ ¼ hikjbjjikþ1iEik ; ð18Þ
wðbÞ ¼ hikjbjb

y
j�1ji0ihi0jbj�1jikþ1i; ð19Þ

wðcÞ ¼ hikjbjb
y
jþ1ji00ihi00jbjþ1jikþ1i: ð20Þ
The energy term in Eq. (18) will be explained in Section 3.5. In Fig. 4, the worm is on site j in configuration (a),
on site j � 1 in configuration (b) and on site j + 1 in configuration (c). We will discuss three possibilities to
sample configurations (a)–(c).



Fig. 4. When the worm moves to the right and tries to insert an interaction in configuration (a), the two possible new configurations are
configurations (b) and (c). The third possibility is bouncing back and changing direction in configuration (a). The transition matrix is thus
a 3 · 3 matrix in one dimension, or a ð2d þ 1Þ � ð2d þ 1Þ matrix in d dimensions.
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� The ‘Metropolis-like’ way. Assume that we are in configuration (a). We choose with equal probability
between (b) and (c). Say (b) was chosen. The transition to (b) is then accepted with probability
min½1;wðbÞ=wðaÞ�. If the update is not accepted, we stay in configuration (a). This approach has the advan-
tage that only the matrix elements for configuration (b) and (a) have to be calculated or known, the ones for
(c) are not needed. This approach is thus recommendable for high dimensions, and for long-range interac-
tions. The (normalized) 3� 3 transition probability matrix reads
T Met ¼
1� qab � qac qab qac

qba 1� � � � qbc

qca qcb 1� � � �

2
64

3
75; ð21Þ
with qkl ¼ ð1=2Þmin½1;wðlÞ=wðkÞ�. The diagonal element corresponding to the lowest weight is thus zero.
� The heat-bath way. We choose between (a), (b) and (c) according to their relative weights,

pðjÞ ¼ wðjÞ=ð
P

kwðkÞÞ, irrespective of the current configuration. The weights of all configurations are
needed in order to evaluate their sum. The transition probability matrix is
T Hb ¼
pðaÞ pðbÞ pðcÞ
pðaÞ pðbÞ pðcÞ
pðaÞ pðbÞ pðcÞ

2
64

3
75: ð22Þ
� The locally optimal way. Heat-bath updates can have relatively large diagonal elements, which are associ-
ated with large rejection ratios or large bounce probabilities. The principle of locally optimal Monte Carlo
updating suggests an optimal transition probability matrix,
T Lo ¼

0 p2

1�p1

p3

1�p1

p1

1�p1
0 1�2p1

1�p1

p1

1�p1

p2

p3

1�2p1

1�p1
1� � � �

2
664

3
775; ð23Þ
where the normalized weights pðjÞ are now ordered in ascending order, p1 6 p2 6 p3. The ordering of the
weights makes sense only if they can be tabulated before the start of the actual simulation. The locally optimal
matrix is the stochastic matrix with the lowest possible second largest eigenvalue, which is negative.



2256 L. Pollet et al. / Journal of Computational Physics 225 (2007) 2249–2266
The non-zero diagonal elements correspond to bounces, meaning that the worm head changes its direction
and undoes its changes until it reaches another point where an interaction can be changed, removed or
inserted.

3.3. Insertion and removal of a worm pair

The only remaining update to discuss is the insertion/removal of a worm pair, which is the connection
between the partition function sector Z and the Green function sector, Ze. The update is depicted in Fig. 5.

In case of Fig. 5, the weights before and after the update are
Fig. 5.
case th
W ðX Þ ¼ CZ ; ð24Þ
W ðY Þ ¼ hikjbjji0ihi0jbyj jiki ¼ ðnj þ 1Þ; ð25Þ
where CZ is a constant specifying the relative weights of the partition function and the Green function sectors,
and the number nj is the occupation on site j before a worm pair is inserted. This is the usual convention in a
worm algorithm. However, we are free to choose the weight of the worm matrix elements, and in SSE they are
usually taken as unity. One of the worm ends will be moved through configuration space and is called the mo-
bile worm, while the other end remains stationary. We choose to always annihilate a worm pair when the mo-
bile worm ’bites’ into the stationary worm,
P ðY ! X Þ ¼ 1: ð26Þ

A worm pair is inserted by choosing a random time and a random site. Thus (in case of Fig. 5),
P ðX ! Y Þ ¼ 1

b
1

L
P ðanÞPðdirÞ: ð27Þ
We have to define the probabilities P(cr) and P(an) that the occupation between the two worm operators is
higher (‘an’) or lower (‘cr’) than outside this infinitesimal interval. We choose with equal probability among
those, except when the occupation is zero or equal to the maximum occupation allowed. In case of zero occu-
pancy, we choose with probability 50% not to insert a worm pair, and analogous to the case of maximum
occupation number. Thus,
P ðanÞ ¼
1� dnj;NMax

2
; ð28Þ

P ðcrÞ ¼
1� dnj;0

2
: ð29Þ
In case of hard-core bosons or spin �1/2 systems, one can modify this relation so as to always insert a worm
pair.

When a worm pair is inserted, there are two possibilities: of we move forward in time creating a particle, or
we move backward in time creating a particle. Physically, moving forward in time and annihilating a particle is
the same as the latter, while moving backward in time and annihilating a particle is the same as the former.
Graphical illustration of the insertion of a worm pair. An arbitrary site j and an arbitrary time tk is chosen. We have shown here the
at the occupation between the worm ends is increased by one.
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Yet, the decorrelation benefits if both a direction (forward/backward) and an operation (creation/annihila-
tion) are chosen. At this point, we explicitly choose a direction, and we take
P ðdir ¼!Þ ¼ P ðdir ¼ Þ ¼ 1=2: ð30Þ

This equation is correct in the directed loop algorithm since there are on average as many moves to the left as
there are to the right.

Finally, we have to fix the constant CZ. Apart from the cases nj = 0 and nj ¼ NMax, which we have already
discussed, the update is always accepted when we choose (in case of Fig. 5)
CZ ¼ 4bL: ð31Þ

With this choice, the Green function G(x, t) is automatically correctly normalized. The procedure to measure
will be discussed in Section 3.5, while the value of the measurements is the same as the ones discussed in the
generalized directed loop algorithm [19] and in the canonical worm algorithm [13].

3.4. Refinements

The perturbative expansion of the partition function is a Poisson process: the interactions (events) are dis-
tributed according to a Poisson distribution, with the intervals between them following an exponential distri-
bution. We sampled these intervals exactly using exponential deviates divided by an energy. According to Eq.
(7), these energies are the diagonal energies of the system. Taking into account that the direction of propagation
is fixed in the directed loop algorithm, we only consider positive time shift windows Dt. Because the exponential
distribution expð�xÞ is only defined for positive x, the energies have to be positive, which is not a priori guar-
anteed. Let EL(R) be the energy to the left (right) of the mobile worm. We can proceed in the following ways:

1. We shift all energies with a large, positive constant, �LR ¼ E0 þ ELR. This will result in small time shift win-
dows. Since these energies also enter in the equations of detailed balance for inserting/removing/relinking
an interaction, they might lead to large bounce ratios.

2. We try to make use of the fact that only energy differences are physically relevant. We have the algorithmic
freedom to choose any pair of �L and �R such that �L � �R ¼ EL � ER and �L; �R P 0. A good choice is
�L;R ¼ EL;R �min½EL;ER�. This quantity can be zero, meaning that the jump in imaginary time is infinite,
i.e., that the next interaction is always reached. Compared to the previous approach, we make thus larger
jumps in imaginary time, and the energies that enter the detailed balance equations of inserting/removing/
relinking an interaction are of the same order of magnitude as the hopping matrix elements. However, we
found that this parameter choice resulted in some anomalously long (non-closing) loops and in problems
with ergodicity when these long loops are discarded.

3. We suggest to use the shifted energies
�L;R ¼ EL;R �min½EL;ER� þ Eoff ; ð32Þ

where the energy offset Eoff overcomes the aforementioned problems with ergodicity. It makes sense to choose
Eoff ¼ hV i with hV i a typical matrix element of the interaction.

After the worm has passed an interaction at time tk, we have to calculate the new energy parameters �L;R

and consider a new time shift. The latter can be accomplished by either drawing a new exponential deviate (as
in step 3), or by adjusting the time shift window Ds! Ds� ðtk � tk�1Þ�L (when moving to the right), using the
property that the exponential distribution has no ‘memory’.

3.5. Detailed balance and the directed loop algorithm

To prove detailed balance one has to consider the global updates. Such a global update starts and ends with
a jump in imaginary time (thus only a forced halting at a chosen time can end a global update). In between,
there can be any number of insertions, annihilations or relinks. For example, the following sequence satisfies
detailed balance: insertion of a worm pair-jump-insertion of an interaction-jump-insertion of an interaction-
jump-removal of a worm pair. We have already shown that the insertion and removal of a worm pair are bal-
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anced, so we just have to look at the sequence starting and ending with the jump. For every such sequence
there exists also the exact opposite sequence. Writing down the acceptance factor for the global move
q ¼ W ðY ÞT ðY ! X Þ
W ðX ÞT ðX ! Y Þ ; ð33Þ
one finds that all exponential factors in the weights are cancelled out by the probabilities for the Poisson
jumps. For each insertion there enters an interaction matrix element hiLjV jiRi in the numerator due to the ratio
W ðY Þ=W ðX Þ, and a factor E (EL for moves to the right, ER for moves to the left) in the denominator due to the
normalization of the preceding Poisson jump. Both these factors are balanced through the locally optimal
transition matrix of Section 3.2. As a result one finds that q is exactly equal to one, hence all moves can be
accepted, which greatly simplifies the computer code. The resulting algorithm samples the configurations that
appear in the decomposition of Eq. (3). Note that the above reasoning still holds if we assume that the worm
continues to move in the same direction after each Poisson move and only allow bounces at the moment when
one decides whether or not to insert or remove interactions. This leads to a version of the worm algorithm that
is similar to the directed loop algorithm for SSE [9,10,17].

The intermediate steps of the algorithm correspond to configurations in the decomposition of the extended
partition function Ze of Eq. (6). To understand this, consider a point in imaginary time at a distance s of the
time where the worm was inserted. Now suppose we halt (this is crucial for measuring the Green function) the
worm head at the moment it passes the point s, and suppose we choose with probability 1/2 whether to con-
tinue the move in the same direction or to move in the opposite direction (we will see further on that this latter
condition is not necessary). Following exactly the same reasoning as above, we see that this algorithm leads to
detailed balance between configurations in the decompositions of Z and ZeðsÞ. Now from here we can derive
that this is true even if we continue the worm move in the same direction at the moment of passing the point s.
To see this it is instructive to consider both directions as two branches of a normalized transition kernel W that
depends on two variables, namely the time Dt and the direction D, and fulfills detailed balance:
W ðX ÞWðDt;!Þ ¼ W ðY ÞWðDt; Þ; ð34Þ

for Dt ¼ jtY � tX j and tX < tY . We have that
P ðX ! Y Þ ¼ WðDT ;!Þ; X < Y ¼ WðDT ; Þ; X > Y : ð35Þ

Thanks to time reversal symmetry, the statement that a worm creates a particle and propagates forward in
time is completely equivalent to the statement that the worm annihilates a particle and propagates backward
in time. Therefore both directions will occur with equal probability. Suppose that at a given moment a con-
figuration X is the actual one with a probability proportional to its weight W(X). Then the probability for a
configuration Y to occur at the next step is proportional to
Z

W ðX ÞP ðX ! Y ÞdX ¼
X

D

Z
W ðX ÞWðDt ¼ jtY � tX j;DÞdX

¼
Z

tY>tX

W ðX ÞWðDt;!ÞdX þ
Z

tY<tX

W ðX ÞWðDt; ÞdX

¼
Z

tY>tX

W ðY ÞWðDt; ÞdX þ
Z

tY<tX

W ðY ÞWðDt;!ÞdX

¼
X

D

Z
W ðY ÞWðDt;DÞdX ¼ W ðY Þ

Z
PðY ! X ÞdX ¼ W ðY Þ:
This equation holds for any algorithm where the direction is fixed, and also forms the basis of the bounce algo-

rithm of Ref. [20].
So, even when we do not change the direction of the worm at the moment that it passes the point s, the

probability to pass a point s is still proportional to the weight of the corresponding configuration in the
extended partition function Ze. This is quite subtle. Suppose we do a jump of the worm operator, without
encountering an interaction. Then it is not possible to immediately come back to the original configuration
in the next step since the direction is preserved. This observation lies at the heart of the proof of convergence
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of the algorithm given by the authors of Refs. [9,10,19]. They prove that detailed balance is satisfied between
any two diagonal configurations, from which it follows that every local step is balanced (in the SSE represen-
tation). Here, we see that detailed balance is fulfilled every time the worm is forced to halt at a chosen time, but
we emphasize that precisely at the moment of inserting or annihilating or relinking an interaction (without
further jump of the worm) detailed balance is not fulfilled.

Because the probability distribution for two consecutive Poisson steps in the same direction is identical to
the probability distribution for a single Poisson step, one finds that in this case the dynamics of the algorithm
is completely equivalent to the dynamics without considering a special point s. Therefore one can state in gen-
eral that the probability for the worm head to pass a point at a distance s from the worm tail is given by the
weight of the corresponding configuration in the extended partition function Ze.

This observation allows for an efficient and unbiased evaluation of the equal-time and unequal time Green
function GijðsÞ ¼ Ze;ijðsÞ=Z: each time the worm head at site i passes the worm tail on a different site j, one has
a measurement for the equal time Green function Gijð0Þ, i.e., the one-body density matrix. Counting the times
that the worm passes at a distance s, one obtains a measurement of the unequal time Green function GijðsÞ.

3.6. Stochastic series expansion representation

As we have already mentioned, we end up in the stochastic series expansion (SSE) representation if we treat
all terms in the Hamiltonian as interactions. In the present formulation this means that the diagonal energies
are always zero, leading to infinite time shift windows all the time. The mobile worm will jump from interac-
tion to interaction, either deleting or relinking it or bouncing back. There is a serious problem with this algo-
rithm, because it will never insert a new interaction. Therefore, in the SSE representation one needs two
updates: one update is to scan over all (discrete) times in order to insert and remove interactions, the other
one consists of modifying interactions with a fixed graph. The proof of convergence with directed loops in
the second update proceeds in the same way as for the LOWA algorithm.

3.7. Summary of the LOWA algorithm

We recapitulate and write down the full algorithm for the soft-core Bose–Hubbard model.

1. Pick an arbitrary site and an arbitrary time and call it ði0; s0Þ. Find the occupation on all sites at that par-
ticular time s0. Calculate the corresponding diagonal energy. A direction (left or right) is chosen with equal
probability. Assume propagation to the right was chosen.

2. At ði0; s0Þ a worm-pair (tail-head) is inserted. If the occupation is higher than zero, the occupation between
the worm ends can either be increased or decreased. If the occupation at ði0; s0Þ is zero, then with proba-
bility 50% a worm is inserted with increased occupation between the worm ends. With probability 50% no
worm is inserted.

3. When moving to the right (left), we denote by � the shifted energy to the left (right) of the worm head, Eq.
(32). Draw an exponential deviate, p ¼ � lnðuÞ with u an uniform random number, 0 < u 6 1. Evaluate the
imaginary time shift window Dt ¼ p=� and the new worm time s0 ¼ sþ Dt.

4. If the worm head encounters the worm tail (at the same site) during its propagation, the update ends with
probability one and we arrive at a new diagonal configuration.

5. If the new worm time is larger than the time to the next interaction, the new worm time only equals the time
of the next interaction. The worm can either bounce back, pass, annihilate or relink the interaction, accord-
ing to the locally optimal transition matrix.

6. If no interaction is encountered in the imaginary time shift window, the worm shifts to its new time where
an interaction is inserted or a bounce occurs, according to the locally optimal transition matrix.

7. Go back to step 3.

Every local single step respects the invariant distribution in the Green function sector. When the mobile
worm reaches the stationary worm, one can measure diagonal observables such as the energy, winding num-
ber, density, etc. They can be updated in the same way as in the directed loop [9] and worm [7] algorithms.
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The algorithm described above is valid when the diagonal energies involve a single site, but also when the
diagonal energies contain nearest-neighbor repulsion terms, and even longer range interactions.

The worm algorithm in path-integral representation is in essence the same algorithm as the LOWA algo-
rithm. The only difference is the way ergodicity and convergence to the correct invariant distribution are
implemented with respect to the direction of worm propagation. In the worm algorithm, one chooses at every
step between forward and backward propagation in time with equal probability, while in the LOWA the direc-
tion is maintained until an interaction forces the worm to alter its direction of propagation. In the context of
the canonical worm algorithm, even other choices have been implemented [13]. All these algorithms are the
same in spirit, they are slightly different implementations of the same idea of performing local updates in
the Green function sector. The directed loop algorithm has previously been formulated in the path-integral
formulation [9]. Although there are some resemblances, the LOWA is different, more general, and the princi-
ples that lie at heart of the derivation of the algorithm are different.

4. Is the locally optimal worm algorithm efficient?

Although we have argued why we believe the proposed LOWA is efficient, we can only verify by doing
numerics in order to get a definite answer on its efficiency. The results are compared with data obtained by
the directed loop algorithm in the stochastic series expansion representation of Refs. [9,19,16], which will
be abbreviated as DLSSE. We used the method of Ref. [16] for the actual computation of the DLSSE. The
error and autocorrelation estimation was done using a binning analysis.

A direct comparison is complicated because present implementations use different data structures for both
algorithms. In the DLSSE, a doubly linked list is constructed before the loop update. Since the graph is fixed,
the number of elements in this list cannot change. This allows to allocate memory statically. In the worm algo-
rithm on the other hand, the number of interactions can change at any time. In our Fortran code this was
implemented using two arrays of a predetermined fixed length, corresponding to the interactions before
and after the current mobile worm time.

4.1. Bose–Hubbard model

We have calculated the standard deviations on the kinetic energy and on the squared density for a one-
dimensional Bose–Hubbard model of size L = 32 sites at an inverse temperature of b = 32 and with a fixed
chemical potential l = 2 in the absence of nearest-neighbor repulsion, Vnn = 0. We work in units t = 1. Simu-
lations consisted of 40 bins that each ran 300 s on a Pentium III processor. We imposed a particle number cutoff
of ten particles per site for U = 1–3, while a cutoff of five particles per site was taken for the other values of U,
ranging from U = 4 to 10. Imposing a cut-off is a necessity for the DLSSE, but not for the LOWA. The number
of loops per update was optimized along the guidelines of Ref. [19]. The Mott phase is reached for U = 6.

We have calculated the standard deviation on the kinetic energy and on the density squared (i) for the
DLSSE. (ii) for the LOWA where the diagonal energy parameters were chosen according to approach (a)
(iii) for the LOWA where the diagonal energy parameters were chosen according to approach (c). In (ii)
and (iii) the 3 · 3 transition matrices were taken as the locally optimal ones as in Eq. (23). We shall discuss
this in Section 4.3. In Figs. 6 and 7 the results for algorithms (i) and (iii) are shown.

Among the different LOWA optimization parameters, approach (iii) is almost always the most efficient one.
The DLSSE seems to be the preferred model for very low values of U. However, approach (ii) performs lots
better than approach (iii) in this regime, and its efficiency is comparable to that of the DLSSE. When the diag-
onal matrix elements are much larger than the off-diagonal ones, as in the Mott phase U > 6, the present algo-
rithm is superior. Admittedly, we recognize that it is not unambiguous how the directed loop simulations
should be performed in the Mott phase because of the very short loop sizes.

4.2. Spin systems

For spin systems, the magnitude of the diagonal and the off-diagonal matrix elements is of the same order.
One can thus expect that the DLSSE is more efficient for spin models than for soft-core bosonic models, since
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diagonal and off-diagonal operators are treated on equal footing in the stochastic series expansion represen-
tation. It is thus interesting to compare the efficiency of the locally optimal worm with the efficiency of the
DLSSE for a spin-1/2 chain. The LOWA was most efficient when the energy offset parameter was set to
Eoff = 0.5. In Fig. 8 the standard deviations of the total energy and of the kinetic energy are shown, which
are obtained by applying the LOWA and the DLSSE to a spin-1/2 chain subject to a magnetic field H. We
find that the locally optimal worm is superior to the DLSSE in our implementations, but it is more meaningful
to say that both algorithms behave similarly as the magnetic field is increased, while the algorithms are most
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efficient near H = 0. Analogous conclusions were found for a spin +1 chain. For a spin +2 chain however, the
DLSSE was found to be superior.

4.3. Heat-bath updates and the locally optimal matrix

A comparison between the heat-bath and locally optimal approach is made in Fig. 9 for a one-dimen-
sional Bose–Hubbard model with parameters U ¼ 1;l ¼ 0:5; b ¼ 32; L ¼ 32; V nn ¼ 0:4 and varying tunnel-
ing amplitude t. The ratio of the standard deviation obtained by the locally optimal approach to the
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Fig. 9. Simulation of a one-dimensional Bose–Hubbard model with parameters U ¼ 1;l ¼ 0:5;b ¼ 32;L ¼ 32; V nn ¼ 0:4 and varying
tunneling amplitude t. Plotted is the ratio r for the condensate fraction (r(cf)) and for the total energy (r(E)), being the ratio of the standard
deviation rLo obtained by the locally optimal approach to the standard deviation rHb obtained by the heat-bath approach ðr ¼ rHb
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Simulations consisted of 40 bins of 300 s on a Pentium III processor per data point.
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standard deviation obtained by the heat-bath approach is shown for the condensate fraction and the total
energy. We see that the locally optimal approach is on average ten to fifteen percent better, but the effect is
less pronounced than in the DLSSE [9,10,19,16]. Even smaller differences were found for some other param-
eter regimes.

4.4. Scaling of the worm with system size

Both the worm and the DLSSE are OðNÞ methods. In the absence of correlations between subsequent mea-
surements, the needed computation time for a desired accuracy scales linearly with system size and inverse
temperature. The scaling efficiency is further determined by the dynamical exponent z, which describes how
the integrated autocorrelation time scales with system size and inverse temperature. The worm and directed
loop algorithm have very low dynamical exponents; z is even zero in some high-dimensional cases. This benef-
icent scaling is the cornerstone for the study of very large system sizes at very low temperatures. Since the pres-
ent algorithm is based on the same principles as the directed loop algorithm and the worm algorithm, one
expects that the dynamical exponent is similar (at least of the same order) but the prefactor of the scaling
behavior might be different.

We studied the scaling behavior for the critical system of an isotropic spin-1/2 Heisenberg chain
ðD ¼ J ¼ 1Þ in zero magnetic field (H = 0), for which the worm updates are fast. We investigated the effects
of increasing system size L at fixed inverse temperature b on the one hand and of increasing the inverse tem-
perature b at fixed system size L on the other hand. This allows us to see whether the algorithm scales sym-
metrically with system size and temperature or not. All calculations ran for a fixed time of 40 bins of 300 s each
on a Pentium III processor. We used optimal parameters for the simulation: we use the locally optimal tran-
sition matrix of Eq. (23) and we set Eoff = 0.5. We focused on the standard deviation and the integrated auto-
correlation time of the kinetic energy, since the modes of this observable couple to the slowest mode of the
simulation while the measurements can be calculated at low computational cost. In Fig. 10 we study the stan-
dard deviation (statistical error) on the average kinetic energy per site. When the system size and the inverse
temperature are sufficiently large, we see a gradual increase in the statistical error with an exponent of
r � ðLbÞ0:5, irrespective of whether L, b or both (note that the quantum imaginary time direction scales as
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Fig. 10. Standard deviation on the average kinetic energy per site as a function of the system size L multiplied by the inverse temperature b
for an isotropic spin-1/2 chain in zero magnetic field. Plots are shown when the system size and the inverse temperature are increased
simultaneously (L = b), when the system size is held constant at L = 128 and only the temperature b is varied (L = 129), and when the
temperature is held constant at b = 16 and the system size L varies (b = 16).
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one classical space direction) are increased. Since, for larger lattices, the worm will visit each site less often, this
result is intuitively understandable. From the data in Fig. 10 we can already see that the dynamic exponent z

obeys 0 < z 6 1. Strangely, when b is taken too low (see the data points at Lb = 16 in Fig. 10), the present
algorithm loses its efficiency. Below we will relate this to higher integrated autocorrelation times. A similar
picture results when we look at the loop size in Fig. 11. We define the loop size Sloop as the total number
of interactions passed, inserted, annihilated and modified by the mobile worm in a single update. We see that
the loop size Sloop scales as Sloop � ðLbÞ1. The loop size increases thus linearly with the increase in area in
space-time. However, if we are very close to the ground state at a fixed system size , then increasing b does
not result in longer loops and the algorithm loses its scaling properties.
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The integrated autocorrelation time sðEkinÞ of the kinetic energy in Fig. 12 shows a similar pattern: for
large enough space-time areas, the integrated autocorrelation time scales as sðEkinÞ � ðLbÞ0:42	2, which was
fitted to the curve L = b in Fig. 12. When the inverse temperature is too low, we unexpectedly find high
autocorrelation times which explains the high standard deviations for the same data points in Fig. 10. This
behavior could be due to the fact that the mobile worm is always forced to make relatively large jumps in
the time direction.

With the DLSSE, the integrated autocorrelation time scales as sðEkinÞ � ðLbÞ0:38	2. This result is in
agreement with Ref. [9]. The dynamic exponent of the DLSSE is thus lower, yet in our calculations the
standard deviations of the DLSSE increased more rapidly with increasing system size. This is due to
the increase in computational cost for a single update, which scales worse for the DLSSE. The computa-
tional cost of a single update depends strongly on the way of implementation, and the scaling of the stan-
dard deviations with system size should be interpreted accordingly. In addition, when looking at the
magnetization on every site, the worm algorithm performs much better than the DLSSE for all system
sizes. We conclude that efficiency largely depends on the implementation of the algorithm and on the
observables of interest [19].
5. Conclusion

In conclusion, we have presented a new formulation of the worm algorithm. The present algorithm has
been derived using the concept of locally optimal Monte Carlo [16] and incorporates ideas both from the
worm algorithm [7] and the directed loop algorithm [9] in the stochastic series expansion representation [8].
We have compared the efficiency of the present algorithm with that of the directed loop algorithm for spin
chains and for the Bose–Hubbard chain. Especially when there are large diagonal matrix elements, the present
worm algorithm is very successful. We have shown that choosing the locally optimal matrix for the transition
matrices occurring in the stochastic subprocesses yields an efficient algorithm. We found that the loop size
increases linearly with the increase in area in space-time, and that the dynamic exponent equals
z = 0.84 ± 4 for an isotropic Heisenberg chain without magnetic field. Seen the efficiency of the method
and its advantageous scaling properties, the algorithm is suitable for large scale calculations of spin systems
and soft-core bosonic models.
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